Parabolic vector bundles

Tomás L. Gómez

ICMAT (CSIC-UAM-UC3M-UCM)

A Tribute to C.S. Seshadri VBAC Webinar 9 September 2020

・ロト ・回ト ・ヨト

- Moduli of π-vector bundles over an algebraic curve. 1970 Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969), 139–260.
- Ø Moduli of vector bundles on curves with parabolic structures
 - Bull. Amer. Math. Soc. 83 (1977), 124-126.
 - (with V. Mehta) Math. Ann. 248 (1980), 205-239.
- (with V. Balaji) Parahoric *G*-torsors on a compact Riemann surface *J. Algebraic Geom.* 24 (2015), 1–49.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Let π be a group acting on a manifold X.

A π -vector bundle is a vector bundle E on X together with an action of π on E, such that the projection $E \longrightarrow X$ is equivariant.

Let X be a smooth curve, $D = \{x_1, \ldots, x_n\} \subset X$ distinct points.

A parabolic vector bundle over (X, D) is a vector bundle E over X together with a weighted flag over the fiber $E|_x$ for each $x \in D$ called parabolic structure, i.e., a filtration $F_{\bullet}E_x$ by linear subspaces

$$E|_{x} = E_{x,1} \supseteq E_{x,2} \supseteq \cdots \supseteq E_{x,l_{x}+1} = 0$$

together with a system of real weights $0 \le \alpha_{x,1} < \alpha_{x,2} < \cdots < \alpha_{x,l_x} < 1$.

These notions stem from generalizations of Narasimhan-Seshadri's theorem.

イロト イヨト イヨト イヨ

Consider the universal cover of a compact Riemann surface

 $\widetilde{X} \longrightarrow X = \widetilde{X}/\pi_1(X)$

Given an (irreducible) unitary representation of $\pi_1(X)$ in U(r), the trivial bundle $\widetilde{X} \times \mathbb{C}^r$ has a natural structure of $\pi_1(X)$ -bundle, and the quotient is a vector bundle E on X. A vector bundle constructed in this way is called an (irreducible) unitary bundle.

For line bundles, unitary line bundles are exactly line bundle of degree 0. What about higher rank?

A vector bundle E on X is **stable** (resp. semistable) if for all proper subbundles $E' \subset E$,

$$\frac{\deg E'}{\operatorname{rk} E'} < \frac{\deg E}{\operatorname{rk} E} \qquad (\operatorname{resp.} \leq)$$

Proposition-Definition (Jordan-Hölder filtration)

E semistable bundle. There is a filtration by semistable bundles

$$0 = E_0 \subsetneq E_1 \subsetneq E_2 \subsetneq E_3 \subsetneq \cdots \subsetneq E_l = E$$

such that all quotients E_i/E_{i-1} are stable. The filtration is not necessarily unique, but the graded object

$$\operatorname{gr}^{JH}(E) = \bigoplus_{i=1}^{l} E_i / E_{i-1}$$

is unique up to isomorphism.

Definition (S-equivalence)

Two semistable bundles are S-equivalent if and only if the graded objects are isomorphic

$$\operatorname{gr}^{JH}(E) \cong \operatorname{gr}^{JH}(E')$$

Remark: If E is stable, then the filtration has only one element, and $gr^{JH}(E) = E$

Theorem I

A vector bundle is stable of degree 0 if and only if it is irreducible unitary.

To allow arbitrary degree, use extension of $\pi_1(X)$ (geometrically, cover of X ramified over a single point).

Theorem II

There exists a projective moduli space of unitary representations of the fundamental group of X.

To prove Theorem II one actually constructs, using GIT, a moduli space of S-equivalence classes of semistable vector bundles.

{unitary representations of π } \Leftrightarrow {semistable bundles of deg 0}/S-equiv.

・ロン ・回 と ・ ヨン・

- $\mathbb{H} = \{x + yi \in \mathbb{C} : y > 0\}$, the upper half plane
- $\Gamma \subset \textit{PSL}(2,\mathbb{R})$ a Fuchsian group acting properly discontinuously on $\mathbb H$
- Suppose the action is free and $\mathbb{H}/\Gamma = X$ is a compact Riemann surface. Then \mathbb{H} is the universal cover, $\Gamma = \pi_1(X)$, and we are in the previous situation.
- ● In [Seshadri-70], a nonfree action is allowed, but we still assume \mathbb{H}/Γ is compact.
- In [Seshadri-77, Mehta-Seshadri-80] we allow ℍ/Γ not compact, but assume finite volume.

In other words, **parabolic vector bundles** appear in a natural way when we consider **non-free actions** of Γ in \mathbb{H} .

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

If \mathbb{H}/Γ is compact, then Γ has a presentation with generators

$$A_i, B_i \ (i = 1, ..., g), C_j \ (j = 1, ..., s)$$

and relations (with integers $m_j \ge 2$)

$$\prod_i [A_i, B_i] \prod_j C_j = 1, \quad C_j^{m_j} = 1 \quad (j = 1, \dots, s)$$

(This will produce rational parabolic weights)

If \mathbb{H}/Γ has finite volume, then Γ has a presentation with generators

$$A_i, B_i \ (i = 1, ..., g), \quad C_j \ (j = 1, ... s), \quad \mathbf{D_k} \ (\mathbf{k} = 1, ... \mathbf{t})$$

and relations (with integers $m_j \ge 2$)

$$\prod_{i} [A_i, B_i] \prod_{j} C_j \prod_{k} \mathbf{D}_{k} = 1, \quad C_j^{m_j} = 1 \quad (j = 1, \dots, s)$$

(This will allow real parabolic weights)

・ロト ・回ト ・ ヨト

Suppose $Y=\mathbb{H}/\Gamma$ is compact. Then there exists a subgroup $\Gamma_0\subset\Gamma$ of finite index acting freely

The study of Γ -vector bundles on \mathbb{H} reduces to the study of π -bundles on the projective curve X, so it is an algebraic problem.

イロト イヨト イヨト

An irreducible π -unitary vector bundle on X is a vector bundle coming from an irreducible unitary representation of Γ .

The definition of π -(semi)stability is the usual one, but we only check with π -invariant vector subbundles.

Theorem I

A π -vector bundle is stable of degree 0 if and only if it is irreducible π -unitary.

Image: A math a math

An irreducible π -unitary vector bundle on X is a vector bundle coming from an irreducible unitary representation of Γ .

The definition of π -(semi)stability is the usual one, but we only check with π -invariant vector subbundles.

Theorem I

A π -vector bundle is stable of degree 0 if and only if it is irreducible π -unitary.

We say that two π -bundles E_1 and E_2 on X have the same type if for all $x \in X$ there is an open neighborhood U of x invariant under π_x , the isotropy subgroup of x, such that their restrictions to U are isomorphic as π_x -bundles.

Theorem II

There exists a projective moduli space of π -unitary vector bundles on X of fixed type τ .

・ロン ・回 と ・ ヨン・

Idea of proof of Theorem I

- π -unitary bundle is π -semistable of degree 0
- **2** irreducible π -bundle is π -stable of degree 0
- $\{\pi$ -unitary $\} \subset \{\pi$ -stable of deg 0 $\}$ is a closed subset
 - semicontinuity of coherent cohomology
 - O(r) is compact
 - on nonzero map between a semistable and a stable bundle of deg 0 is isomorphism
- {irreducible π -unitary} \subset {vector bundles} is an **open** subset
 - Let $\rho: \pi \longrightarrow \mathsf{U}(r)$ irreducible, *E* the associated vector bundle
 - There exists a smooth local moduli space V of equivalence classes of irreducible π-unitary representations around ρ of dimension dim_ℝ V = 2 dim_ℂ H¹(X, π, E[∨] ⊗ E). (universal local property).
 - *E* is stable, hence simple. There exists a local moduli *D* of simple bundles around *E* of dimension dim_C *D* = dim_C *H*¹(*X*, π, *E*[∨] ⊗ *E*)
- Since the unitary condition is both open and close, it is enough to produce a connected family which parametrizes all π-stable bundles (of fixed type τ). This is constructed using Quot-schemes.

イロト イヨト イヨト イヨト

Idea of proof of Theorem II

- Let $\mathcal{V} = \mathcal{O}_X(-m)^{\oplus p}$, $(m \gg 0$ fixed to be determined in the proof)
- $(E, \varphi : \mathbb{C}^{p} \xrightarrow{\cong} H^{0}(E(m)))$, $E \pi$ -vector bundle, gives a quotient

$$q:\mathcal{V}\stackrel{\varphi}{\cong} H^0(E(m))\otimes \mathcal{O}_X(-m)\twoheadrightarrow E$$

hence a point in $Q := Quot(\mathcal{V}, p)$.

- The group π acts on Q, and $q \in Q^{\pi}$, the π -invariant subscheme.
- Fix N points T = {t₁,..., t_N} ⊂ X. For each t ∈ T, q induces a quotient on fibers

$$q_t: \mathbb{C}^p \twoheadrightarrow E_t$$

- Define a polarization on Q^{π} using $Q^{\pi} \longrightarrow \prod_{t \in T} Gr(\mathbb{C}^{p}, r)$ and the polarization $(1, \ldots, 1)$ on the product.
- π -(semi)stability \Leftrightarrow GIT-(semi)stability
- The moduli space is the GIT quotient by SL(p) using the induced polarization.

・ロト ・回ト ・ヨト ・ヨト

Parabolic bundles [Seshadri-77, Mehta-Seshadri-80]

Suppose $U = \mathbb{H}/\Gamma$ has finite volume. *U* is a (dense) open subset on a smooth projective curve *X*

Parabolic points of $D = \{x_1, \ldots, x_n\} \subset X$ are the images of fixed points of Γ in \mathbb{H}^+ (i.e., both parabolic and elliptic fixed points of Γ)

A parabolic vector bundle over (X, D) is a vector bundle E over X together with a weighted flag over the fiber $E|_x$ for each $x \in D$ called parabolic structure, i.e., a filtration $F_{\bullet}E_x$ by linear subspaces

$$E|_{x} = E_{x,1} \supsetneq E_{x,2} \supsetneq \cdots \supsetneq E_{x,l_{x}+1} = 0$$

together with a system of real weights $0 \le \alpha_{x,1} < \alpha_{x,2} < \cdots < \alpha_{x,l_x} < 1$.

Parabolic bundles [Seshadri-77, Mehta-Seshadri-80]

Parabolic structure on elliptic points

- Let $\Gamma \longrightarrow GL(r, \mathbb{C})$ be a representation. Consider the Γ -bundle $\widetilde{E} = \mathbb{H} \times \mathbb{C}^r$.
- Let $y \in \mathbb{H}$ be a point where the action is not free, and $x \in \mathbb{H}/\Gamma$ the image.
- Let $E = p_*^{\Gamma} \widetilde{E}$ be the sheaf of invariant sections.
- The isotropy π_y is finite cyclic of some order N. It acts on E_y as

$$\begin{pmatrix} e^{2\pi i d_1/N} & 0 \\ & \ddots & \\ 0 & e^{2\pi i d_r/N} \end{pmatrix}$$

which gives a filtration by eigenspaces

$$\widetilde{E}|_{x} = \widetilde{E}_{x,1} \supsetneq \widetilde{E}_{x,2} \supsetneq \cdots \supsetneq \widetilde{E}_{x,l_{x}+1} = 0$$

with rational weights $0 \le \alpha_{x,1} < \alpha_{x,2} < \cdots < \alpha_{x,l_x} < 1$, given by the different values of d_j/N .

• It can be seen that this filtration induces a filtration on E_x

Parabolic structure on parabolic points

- Let $\Gamma \longrightarrow U(r)$ be a unitary representation, \mathbb{H}/Γ not compact.
- $\mathbb{H}/\Gamma = U \subset X = \mathbb{H}^+/\Gamma$. Let $x \in X \setminus U$ and $y \in \mathbb{H}^+$. We may assume $y = \infty$.
- The vector bundle $p_*^{\Gamma} \tilde{E}$ on U can be extended canonically to a vector bundle E on X:
 - Let $\mathbb{H}_{\delta} = \{z : \operatorname{Im}(z) > \delta \geq 0\}.$
 - $V_{\delta} = \mathbb{H}_{\delta}/\mathbb{Z} \cup \{x\}$ is an open neighborhood of x (\mathbb{Z} acts as $z \mapsto z+1$)
 - A section of E|_{Vδ} is a bounded Z-invariant section of H_δ × C^r (Γ acts on C^r by the given action)
 - The germ of *E* at *x* is generated (as $\mathcal{O}_{X,x}$ -module) by sections of the form $e^{2\pi i \alpha_j z} e_j$, $0 \le \alpha_1 < \cdots < \alpha_r < 0$.
- As in the previous case, it can be shown that we can define a filtration on $E|_x$ with weights α_i .

メロト メポト メヨト メヨ

Parabolic bundles [Seshadri-77, Mehta-Seshadri-80]

Let *E* be a parabolic vector bundle. A vector subbundle $E' \subset E$ inherits a canonical structure of parabolic bundle

$$F_{\bullet}E'_{x} = E'_{x} \cap F_{\bullet}E_{x} \quad \alpha'_{x,i} = \max\{\alpha_{x,j} : E'_{x} \cap E_{x,j} = E'_{x,i}\}$$

pardeg
$$E = \deg E + \sum_{x \in D} \sum_{i=1}^{l_x} \alpha_i (\dim E_{x,i} - \dim E_{x,i+1})$$

Definition

A vector bundle *E* on a smooth projective curve *X* is stable (resp. semistable) if for all proper subbundles $E' \subset E$,

$$\frac{\mathsf{pardeg}\ E'}{\mathsf{rk}\ E'} < \frac{\mathsf{pardeg}\ E}{\mathsf{rk}\ E} \qquad (\mathsf{resp.}\ \le)$$

S-equivalence is defined as in the case of vector bundles.

Tomás L. Gómez (ICMAT)

Image: A math a math

Theorem I-a

A parabolic vector bundle is stable of degree 0 if and only if it comes from an irreducible unitary representation of Γ .

S-equivalence classes of semistable parabolic bundles of degree 0 correspond to unitary representations.

Theorem I-b

Let X be a compact Riemann surface and $D = \{x_1, \ldots, x_n\}$ distinct points. There is a bijection between unitary representations of $\pi_1(X - D)$ such that the holonomy around x_i is conjugate to a diagonal matrix

$$\begin{pmatrix} e^{2\pi i\alpha_{x,1}} & 0\\ & \ddots & \\ 0 & e^{2\pi i\alpha_{x,r}} \end{pmatrix} \quad 0 \le \alpha_{x,1} < \cdots < \alpha_{x,r} < 1$$

and S-equivalence classes of semistable parabolic bundles with weights $\alpha_{x,i}$.

Irreducible representations correspond to stable parabolic bundles.

イロト イポト イヨト イヨ

Theorem II

Let X be a compact Riemann surface, and $D = \{x_1, \ldots, x_n\}$ distinct points. Fix the type of the parabolic structure (i.e., the dimensions of the quotients of the filtrations on the fibers of each $x_i \in D$). Fix weights α_{x_i} . Fix the rank and the parabolic degree.

There is a projective moduli space of S-equivalence classes of semistable parabolic bundles.

Remarks

- The notion of (semi)stability depends on the weights α_{x,i}, which can be thought of as parameters for the notion of (semi)stability.
- For any choice of **real** weights $\alpha_{x,i}$, there is a set of **rational** weights $\alpha'_{x,i}$ which gives the same notion of (semi)stability. Therefore, we may assume the weights are rational.

• Let $\mathcal{V} = \mathcal{O}_X(-m)^{\oplus p}$, $(m \gg 0$ fixed to be determined in the proof)

メロト メロト メヨト メ

• Let $\mathcal{V} = \mathcal{O}_X(-m)^{\oplus p}$, $(m \gg 0$ fixed to be determined in the proof) • $(E, \varphi : \mathbb{C}^p \xrightarrow{\cong} H^0(E(m)))$, E parabolic bundle, gives a quotient

$$q: \mathcal{V} \stackrel{\varphi}{\cong} H^0(E(m)) \otimes \mathcal{O}_X(-m) \twoheadrightarrow E$$

Let V = O_X(-m)^{⊕p}, (m ≫ 0 fixed to be determined in the proof)
 (E, φ : C^p → H⁰(E(m))), E parabolic bundle, gives a quotient

$$q: \mathcal{V} \stackrel{\varphi}{\cong} H^0(E(m)) \otimes \mathcal{O}_X(-m) \twoheadrightarrow E$$

• Fix N points in X (distinct from parabolic points) $T = \{t_1, \ldots, t_N\}$

Let V = O_X(-m)^{⊕p}, (m ≫ 0 fixed to be determined in the proof)
 (E, φ : C^p [≃] → H⁰(E(m))), E parabolic bundle, gives a quotient

$$q: \mathcal{V} \stackrel{\varphi}{\cong} H^0(E(m)) \otimes \mathcal{O}_X(-m) \twoheadrightarrow E$$

Fix N points in X (distinct from parabolic points) T = {t₁,..., t_N}
For each t ∈ T, q induces a quotient C^p → E|_t

Let V = O_X(-m)^{⊕p}, (m ≫ 0 fixed to be determined in the proof)
 (E, φ : C^p ≃→ H⁰(E(m))), E parabolic bundle, gives a quotient

$$q: \mathcal{V} \stackrel{\varphi}{\cong} H^0(E(m)) \otimes \mathcal{O}_X(-m) \twoheadrightarrow E$$

- Fix N points in X (distinct from parabolic points) T = {t₁,..., t_N}
 For each t ∈ T, g induces a quotient C^p → E|_t
- For each $x \in D$, and j, the parabolic filtration induces a quotient $E|_x \rightarrow E/E_{x,j}$ (of dimension $d_{x,j}$).

$$\prod_{t\in T} \operatorname{Gr}(\mathbb{C}^p, r) \times \prod_{x\in D} \prod_j \operatorname{Gr}(E_x, d_{x,j})$$

Image: A math a math

Let V = O_X(-m)^{⊕p}, (m ≫ 0 fixed to be determined in the proof)
 (E, φ : C^p ≃ H⁰(E(m))), E parabolic bundle, gives a quotient

$$q: \mathcal{V} \stackrel{\varphi}{\cong} H^0(E(m)) \otimes \mathcal{O}_X(-m) \twoheadrightarrow E$$

- Fix N points in X (distinct from parabolic points) $T = \{t_1, \dots, t_N\}$
- For each $t \in T$, q induces a quotient $\mathbb{C}^{p} \twoheadrightarrow E|_{t}$
- For each $x \in D$, and j, the parabolic filtration induces a quotient $E|_x \rightarrow E/E_{x,j}$ (of dimension $d_{x,j}$).

$$\prod_{t\in T} \operatorname{Gr}(\mathbb{C}^p, r) \times \prod_{x\in D} \prod_j \operatorname{Gr}(E_x, d_{x,j})$$

More precisely, we get a point in

 $\prod_{x \in D} \prod_{j} \operatorname{Gr}(\mathcal{E}_{x}, d_{x,j}) \quad \mathcal{E}_{x} = \mathcal{E}|_{\operatorname{Quot}(\mathcal{V}, p) \times \{x\}}, \ \mathcal{E} \text{ universal quotient for } \operatorname{Quot}(\mathcal{V}, p)$

(日) (同) (三) (三) (三)

Let V = O_X(-m)^{⊕p}, (m ≫ 0 fixed to be determined in the proof)
 (E, φ : C^p ≃→ H⁰(E(m))), E parabolic bundle, gives a quotient

$$q: \mathcal{V} \stackrel{\varphi}{\cong} H^0(E(m)) \otimes \mathcal{O}_X(-m) \twoheadrightarrow E$$

- Fix N points in X (distinct from parabolic points) $T = \{t_1, \dots, t_N\}$
- For each $t \in T$, q induces a quotient $\mathbb{C}^{p} \twoheadrightarrow E|_{t}$
- For each $x \in D$, and j, the parabolic filtration induces a quotient $E|_x \rightarrow E/E_{x,j}$ (of dimension $d_{x,j}$).

$$\prod_{t\in T} \operatorname{Gr}(\mathbb{C}^p, r) \times \prod_{x\in D} \prod_j \operatorname{Gr}(E_x, d_{x,j})$$

More precisely, we get a point in

 $\prod_{x \in D} \prod_{j} \operatorname{Gr}(\mathcal{E}_{x}, d_{x,j}) \quad \mathcal{E}_{x} = \mathcal{E}|_{\operatorname{Quot}(\mathcal{V}, p) \times \{x\}}, \ \mathcal{E} \text{ universal quotient for } \operatorname{Quot}(\mathcal{V}, p)$

 Define a polarization using the weights α_{x,j} (which we assume rational). The moduli space is the GIT quotient by the action of SL(p).

イロト イロト イヨト イヨト

Alternative definition of parabolic bundles

Definition as sheaf filtration (Simpson, Maruyama-Yokogawa)

We can define the parabolic bundle structure at each $x \in D$ as a sheaf filtration by vector bundles

$$E = E_1^x \supseteq E_2^x \supseteq E_3^x \supseteq \cdots \supseteq E_l^x \supseteq E(-x)$$

together with weights $0 \le \alpha_{x,1} < \alpha_{x,2} < \cdots < \alpha_{x,l_x} < 1$

Relationship between both definitions

$$0 \longrightarrow E_i^x \longrightarrow E \longrightarrow E_x/E_{x,i} \longrightarrow 0$$

Recall:

- E_i^{\times} are vector bundles on X.
- $E_{x,i}$ are vector subspaces of the fiber E_x of E at x.

A B > A B >

Equivariant bundles and parabolic bundles

• Let X be a variety with an action of a finite group π , and consider the quotient

$$p: X \longrightarrow Y = X/\pi$$

If the isotropy groups are cyclic, then π -vector bundle E on X gives a parabolic vector bundle structure on $F = p_*^{\pi}(E)$ (π -invariant direct image) on Y (with rational weights).

- Conversely, given a parabolic bundle on a variety Z (rational weights), we can construct a π -vector bundle on a π -variety \widetilde{Z} such that the parabolic bundle comes as above.
- This correspondence is implicit in the work of Seshadri. As far as I know, the first explicit description is in a paper of Usha Bhosle (Math. Annalen, 1984).

A π -vector bundle E gives a representation of the isotropy group π_x on the fiber E_x . The eigenspace decomposition gives a filtration on E_x and, after some work, we obtain a filtration on F_x .

・ロト ・回ト ・ヨト ・ヨ

• Indranil Biswas (Duke, 1997) gives a formula for this correspondence in terms of sheaf filtrations by vector bundles

$$F = p_*^{\pi}(E), \quad F_i^{x} = p_*^{\pi}(E(-ix)), \quad i = 0, \dots, |\pi_x|,$$

generalizes this correspondence for higher dimensional varieties, and in a series of papers finds many applications.

• Mundet i Riera (IJM, 2002) gives another construction, using a fibration instead of a covering, which does not depend on the weights.

There is a lot of work studying moduli spaces of parabolic bundles. Just to mention some of it:

- Rationality of the moduli space (Boden-Yokogawa, 1999)
- Betti numbers (Nitsure 1996, Holla 2000)
- Betti numbers of parabolic Higgs bundles (Garcia–Prada-Gothen-Muñoz, 2007)
- Torelli theorem (rank 2 Balaji-del Baño-Biswas 2001, rank *n* Alfaya, G. 2019) and automorphisms.
- Symplectic and Poisson geometry of the moduli space of parabolic Higgs bundles (Hurtubise 1996, Bottacin 2000, Logares-Martens 2010)

< □ > < 同 > < 回 > < Ξ > < Ξ

The notion of parabolic vector bundle has been generalized in many directions. I will just mention a few.

- Parabolic bundles can be defined for X variety with dim X > 1. A parabolic structure is given by a divisor D (usually a union of smooth divisors with normal crossings), and a vector bundle filtration of the vector bundle $E|_D$ with real weights [Maruyama-Yokogawa 1992, Bhosle 1992]
- A related notion (Quasi-parabolic bundles) is used to study vector bundles on nodal curves (Bhosle, Nagaraj-Seshadri, ...).
- Parabolic bundle structures have been defined for **principal bundles** (Teleman-Woodward, Balaji, Biswas, Nagaraj). Another definition is used in the geometric Langlands program of Beilinson-Drinfeld. Also Balaji and Seshadri (JAG, 2015) have used parahoric *G*-bundles as a generalization in this direction.

イロト イヨト イヨト イヨト

 Let X be a Riemann surface. If X is compact and we consider representations of π₁(X) into the linear group GL(n) we are lead to Higgs bundles.

If $U = X \setminus \{x_1, \ldots, x_n\}$, representations of $\pi_1(U)$ in GL(*n*) leads us to parabolic Higgs bundles. Simpson (J. AMS, 1990) makes a very detailed study in this situation, using tame harmonic bundles on U to relate:

- Parabolic Higgs bundles on X
- **2** Filtered regular \mathcal{D} -modules on U
- \bigcirc Filtered local systems on U
- **Parabolic Higgs bundles for higher dimensional varieties** have been studied by Biquard, Jost-Zuo, and more recently by Takuro Mochizuki (first for tame harmonic bundles and then for wild harmonic bundles).
- The work of Mochizuki is applied by Donagi and Pantev in their study of the geometric Langlands program.

< □ > < 同 > < 回 > < Ξ > < Ξ

Thank you

・ロト ・回ト ・ヨト ・ヨ